DAMP AND TIMBER REPORT

For and on behalf of XXXX
Property surveyed XXXX
London XXXX

This report is for the sole use of XXXX for whom the survey was undertaken and can only be relied upon for 90 days from the survey date. Unless expressly stated otherwise in this report, nothing in this report confers or is intended to confer any rights on any third party pursuant to the Contracts (Rights of Third Parties) Act 1999.
Dear XXXX,

Thank you for instructing us to carry out a damp survey of XXXX. We understand that you own the property and that you identified a number of potential damp issues. So, you wish to have an opinion from an independent expert damp surveyor. Please inform us if we have misunderstood your instructions.

OVERALL OPINION

Overall the house has great potential. All properties can be exposed to dampness to some degree. You will mitigate the risk of damp if you follow all our recommendations. This report is intended to be read in full. Observations and opinions must not be taken in isolation.

Like any building, especially a period property, you need to be aware of the risks of damp arising in the future and plan a programme of prevention and maintenance accordingly.

We recommend you spend time understanding our advice in this report, which we would be happy to discuss in person. We would also be delighted to revisit at any time for a modest survey update fee.

INDEPENDENCE AND METHODOLOGY

Our only income is through damp survey fees. Our motivation is integrity and practical, durable solutions. We are independent of contractors and never profit from remedial work. We use chemical analysis to identify damp within walls.

SURVEYOR’S DECLARATION

I confirm that I inspected XXXX on 20 July 2018. I conclude that at the time of the survey there was dry rot and mould.

Simon Hichens

Simon Hichens BSc (Chemistry), CSDB, AISSE (Institute of Specialist Surveyors & Engineers)
Certificated Surveyor of Dampness in Buildings (Property Care Association, PCA)
Expert Surveyor

Report 26 July 2018
ABOUT DAMP SURVEYS LTD

Damp Surveys Ltd is an independent specialist damp surveying company incorporated following the development of analytical technology employed to rapidly and accurately differentiate types of damp. Our confidence in our analytical equipment allows us to categorically state whether or not there is a risk of rising damp. If we are satisfied that there is minimal risk of rising damp, we can offer a warranty subject to application and conditions.

Independence is key to understanding how we operate and why we provide a unique service quite different to any other company. Many contractors, looking for chemical damp work, offer low cost, or sometimes “free” surveys. We do not and never will benefit financially from any recommended remediation. We are motivated to recommend optimal treatment to protect the property now and into the future.

Your peace of mind is our goal, for you to be satisfied that the property will be properly protected against damp.
THE PROPERTY

The property is detached 4-story Georgian building linked to the righthand neighbour. The front door faces South. All references to location are taken as if standing on the road looking at the front door. The property has an elevation of 40M above sea level, in a low flood risk area (see flood risk checker – flood risk is a proxy for a high-water table, a necessity for rising damp). We can conclude that the water table is well below ground floor level, therefore the risk of rising damp is remote.

Changes to the property’s original design

The property has been modified by a conversion into flats. Importantly, there has been a layout change to the rear toilet, creating a poorly ventilating double void (floor laid about 1 meter above the original void as well as the original subfloor void).

UNDERSTANDING DAMP

Excess damp found in properties is largely as a result of changes to the original design, location or use. Properties are built to absorb rain and evaporate moisture without excessive damp inside. Lifestyles have changed over the years, such as taking showers more often. The resultant high humidity means most properties are at increased risks of condensation. Damp is not inherently dangerous. However, it can spoil decoration and encourage rot, mould and insect infestation. Rot is omnipresent and starts when wood cells rupture above 28% moisture content with a constant source of water. Brown rots, such as dry rot proliferates in poorly vented humid voids. Wood boring beetles are attracted to moist wood. Mould requires humidity on the surface of over 85% relative humidity (RH) to grow.

Rising damp can spoil decorative surfaces. However, there is insufficient moisture in rising damp to cause wood to rot. Ground water contains nitrates, that inhibit mould growth. Rising damp needs a constant source of water, such as a high water-table within 100mm of the ground. Stop the source of water and rising damp will dissipate. According to Thames Water, London’s water-table is low, below the lowest tube-line. Rising damp results from the high relative force of attraction of silicone (found in sand, bricks, glass etc.), a phenomenon unhelpfully described as capillarity. The attractive force of silicone spreads water through connected pores in all directions. Plaster can be particularly absorbent. Water spreads downwards first through the additional force of gravity, until lower pores become saturated.

Condensation is caused by humid air condensing on cold surfaces, condensation starts when a wall’s temperature falls below the “dew point”. The dew point increases as humidity rises. There is often a line within a wall where the temperature is below the dew point, this is called the dew point line. Walls are designed to absorb and evaporate moisture daily.
Damp is often cumulative. For example, condensation is more likely to form near a wall that is damp from penetrating rainwater. Likewise, rain will not evaporate as quickly if the wall surface is already humid through condensation. Furthermore, wet external walls are poor thermal insulators. North, North-Eastern and North-Western walls receive minimal warmth from the winter sun. Some damp only occurs infrequently, once every few years, resulting from persistent rain and wind. Damp detection depends on conditions during the survey.

OBSERVATIONS

Conditions during the survey

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>Partially occupied, partially furnished</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather</td>
<td>Dry</td>
</tr>
<tr>
<td>The previous 24 hours</td>
<td>Dry</td>
</tr>
</tbody>
</table>

External

- The chimneys, flashing and roof appeared to be functioning correctly – not all visible.
- There were signs of damage to the gutter, but these appear to have been fixed.
- The basement ground floor is solid.

Findings

1. The fungus was identified as dry rot (serpula lacrimans).
2. Understanding Dry Rot
Rot needs sufficient moisture to split wood cells, about 28% water. The heartwood of pine has a resistance of about 5 years.

The process is standard aerobic respiration used by most living cells;

$$\text{glucose + oxygen } \rightarrow \text{ carbon dioxide + water (+ energy)}$$

As water is released, so more timber becomes susceptible and the cycle becomes self-perpetuating. The void is clearly large enough to supply the necessary oxygen, but not ventilated enough to dry out the timber.

Dry rot grows through cracks in walls, but needs water or lack of ventilation to survive
I don’t think the basement apartment is the source of the outbreak, it doesn’t fit with the profile and centre. However, I would recommend measures to increase ventilation and therefore reduce potential for condensation in the basement, as we discussed.

3. The dry rot is centred on the original floor which had partially collapsed, the remaining timber disintegrates to the touch.

The above was the original floor. It has no strength left.
4, The areas at risk are;
A, all timber in the toilet and below it.

This is a photo taken below the toilet, the white violet coloured rot is dry rot.

B; timber window frames, panelling sills, whether damaged or not, etc.
C; Outside the toilet

The area outside the toilet falls within the category of at risk but not yet structurally compromised, not at risk of ongoing exposure (must be kept dry), and worth treating and monitoring rather than replacing (but at your risk). The blue in the illustration represents the growth and red is the area attacked that can be easily replaced.

The following photos correspond to numbers in the illustration above. The rot was purposefully left in situ to determine if it and the strands supplying water and nutrients die of their own accord. The shots are taken under the floorboards. The timbers appear to be relatively new, green tantalised wood, which should be resistant to rot.
It is important to note the corroded copper pipe (top of middle image above). There is a good chance that excess humidity condensing on the pipe represents the main or significant contributing source of water, this is consistent with the centre of attack being the original floor, found directly below it. Once rot sets it is becomes self-perpetuating so long as water doesn’t evaporate by ventilation.

Outside the toilet cont.

The above photos are of the architrave around the toilet door. It should be replaced.

D; the rooms in the basement

The toilet to the basement is damaged by dry rot (righthand photo). It is likely that the bathroom is damaged in the boxed area behind the tiles. However, there are no structural timbers at ground level, so replacement is for aesthetic, rather than safety reasons.
5 The cause of the dry rot

As can be seen in the above photo, the change in layout from externally accessed toilet, to a raised an internally access toilet results in a large unvented double void. Key to resolving the dry rot is replacing the ventilation at a suitable height and minimising the amount of superfluous timber. Note the fruiting body at the base. It is highly unusual to find dry rot outside. It suggests the outbreak was at the limit of its resources.
Sub-floor ventilation

The only sub-floor ventilation to the void in question, was below the original floor. The vents are too close to the ground, there should be a clearance of at least 150mm to allow for the bounce of rain water (and water from the tap). Furthermore the vents appeared to be blocked. Daylight was not visible inside. A pen would not easily push through the grill.

Additional matters

Cellar rot (or coniophora puteana)

This image was take behind the toilet, the timber was isolated, dry and completely devoid of strength. It is unusual to find rot in competition, suggesting it was not directly related to the dry rot. There were no signs of damp ingress, so it is likely the cellar rot is caused by condensation on the cistern. There is no need for treatment, nor does there appear to be a structural function to this timber.
Mould in the rear left-hand corner.

I understand the gutter has only just been fixed and that the wall is 22inch or about 600mm. Theoretically walls dry out at a rate of 25mm per month, or 2 years in this case. The wall appeared damp and there was considerable mould and salts on the wall surface.
CONCLUSIONS

The main rot is dry rot caused by poor ventilation resulting from the layout changes to the rear toilet.

RECOMMENDATIONS

Our recommendations address items identified in our survey as areas of sufficient concern that they must be undertaken to further mitigate the risk of damp. In line with every property, we recommend ongoing observation, repair and a periodic programme of maintenance, including annual clearing of gutters, repainting, repointing and noting of perimeter ground level and water-table fluctuations.

1, Dry rot treatment - estimate of up to a week’s work, £3,000 - £10,000 (but quotes can be higher), plus cost of items replaced such as window, vent etc

Simply put;

a) cap water by door,
b) remove toilet, sink etc,
c) then remove all timber from room and void below it,
d) Replace the timber joists and floorboards with pre-treated timber (tanalised) making sure to treat the cut ends with sodium octaborate,
e) Wrap ends in a membrane to protect the new timber from walls,
f) Replace all other timber in the toilet area; to include panelling, boxing, window frame, the door architrave inside and outside door etc.

c) Some treatment companies advocate irrigating walls with sodium octaborate. It’s expensive, disruptive and as it’s water based, can cause cells to split open.
I’ve seen no evidence of any benefit, indeed dry rot is the rot least vulnerable to sodium octaborate and will happily grow across treated walls and timber (as it has outside the toilet). The PCA (Property Care Association) no longer recommends this treatment.

d) Classically all timber that has come into contact with dry rot should be removed, including the joist outside the toilet. However, the dry rot can remain dormant for a year (some say two years), but will die without a food source (i.e. timber sufficiently damp to split open cells).
And only a small / probably superficial amount of dry rot has grown on the timber outside the toilet, the timber looks treated, so less vulnerable.
The cost of repairing the joist(s) outside the toilet is probably as great as treating the toilet.

So, at your risk, try treating just the toilet area, architrave outside and room beneath it.
To mitigate the risk; observe the rot after a week or so. If the rot is drying out, and there is no additional outbreak, remove rot, apply sodium octobrate and allow to dry thoroughly.
Monitor under the floor boards every quarter with a borescope and humidity meter for at least one year.

2) Move up, remove or seal the old vents. Install the two old vents (or new vents of similar proportions), at least 150mm above the patio, consider a third vent to the side (to encourage greater ventilation).

3) Lag the cold-water pipes in the toilet.

4) Ensure some form of ventilation in the toilet (that is used) and keep an eye on humidity (meters are very inexpensive - £10+). Do the same in the basement kitchen, bathroom and toilet.

5) The mould in the bedroom;
 a) Kill with bleach or sodium bicarbonate leave to dry.
 b) Once dry, use course grain sandpaper to take off the wall.
 c) Paint final coat with fungicidal (anti-mould) paint.

LIMITATIONS

Damp Surveys Ltd reports are designed to provide you with an informed independent expert opinion as to internal dampness of the property together with any recommendations for further investigation or remedial work. We do not warrantee any findings in this report unless we enter into a separate warrantee agreement with you.

The survey was conducted during daylight hours. Damp will be more noticeable at night and when the weather is colder and more humid. Gutters are more likely to fail when full of leaves and during periods of prolonged rain and adverse wind. We make best endeavours but cannot guarantee being able to identify all forms of damp, rot and insect infestation affecting the property. We are happy to return and update our observations and advice at any time.

We carried out a careful and thorough inspection of as much of the property as was accessible. However, when it is not possible to make a full inspection, we make a professional judgement about the likelihood of a defect being present. In certain circumstances, this may lead to a recommendation for further action to open up an area for further investigation. We are unable to see the whole roof, all the guttering and some of the drains. We were unable to inspect woodwork or other parts of the structure which are covered, unexposed or inaccessible, and are therefore unable to report that such parts of the property are free from defect. There were no obvious signs of damp resulting from these limitations.
SURVEY OBJECTIVES
Our damp and timber surveys are designed to:
- identify the areas of unwanted dampness within the property,
- identify the types of unwanted dampness,
- identify the causes of unwanted dampness,
- identify the effects of damp such as rotten timber, mould and infestation,
- recommend remedial action where damp has been identified,
- recommend long-term plans to address risk of future dampness,

SURVEY METHODOLOGY
In assessing whether dampness and timber defects are present in a property we consider many factors including:
- weather conditions during and preceding the survey,
- inside and outside temperature and humidity and the orientation of each wall,
- design and age of the property, elevation, signs of flooding and standing water,
- cold spots and flow of cold or humid air in and around the property,
- roofing and guttering (this is NOT a roofing report),
- signs of drain leakage (this is NOT a plumbing or drainage survey, nor a pressure check),
- coverings and coatings of internal and external walls,
- existence of damp proofing, cavity wall insulation or timber treatments,
- height of the surrounding garden, and sufficiency of ventilation,
- moisture meter using a Protimeter “Survey Master”,
The survey is non-invasive save for a few pin sized holes, left by a measuring device. We do not lift floor coverings without written consent. We do not look in lofts unless expressly asked to do so.

ONGOING MAINTENANCE
- Keep gutters clear, especially when leaves collect in them.
- Check flow of water from the roof and down the gutter during heavy rain.
- Reduce risk of condensation by extracting damp air from humid rooms such as a kitchen or bathroom.
- Given the age of the property, the external walls are unlikely to be insulated. There is evidence of normal levels of mild condensation. A solution is to improve the heat on these areas during cold periods, this can be achieved by installing a wall mounted electric thermostat heater in rooms with external walls. If the condensation persists, you may want to consider installing thermal plasterboard on the internal side of the affected walls.
Mould and damp should be washed away daily.

There is no magic bullet for condensation in a bathroom. It’s very common. Improving the ventilation out, heat and use of tiles and bathroom paints help.

If the bathroom is updated in the future be aware when a bath or shower is taken out, there is likely to be evidence of damp left behind it. This is normal and should dry easily.

All guttering and down-spouts, appeared to be in good condition but they should be visually inspected during a rain event.

We advise clients that they need to be vigilant in ensuring that drains and guttering on the building are cleared and functioning at all times.

IDENTIFYING DAMP

Damp or dampness, is unwanted and excessive moisture. There are four distinct forms;

- Rising damp is below ground water that rises up a wall,
- Penetrating damp is moisture from defective roofs, gutters, pipes or a “bridge”,
- Plumbing leaks; from mains or internal pipes, waste, drainage and overflows,
- Condensation, the most common cause of dampness.

Rising damp

Rising damp is defined as the deleterious vertical flow of water, derived from below the original ground level, through a property’s internal masonry wall, to above the base of the ground floor. Anyone can replicate rising damp by placing the bottom of a clay brick in water, damp will rise by about 200mm. The same effect is more rapid in a clay tile where damp can be seen to rise by as much as 400 mm. Water moves to fill the pores in the most porous substrate first. The force of attraction is equal in all directions, but gravity pushes a majority of the water downwards until all the lower pores are filled.

Profiling rising damp is important. Like a swimming pool filling up, the damp profile is horizontal, not random patterns often associated with condensation. Rising damp is in constant equilibrium with evaporation. The greater the evaporation, the lower the rise of dampness. The greater the relative humidity the greater the potential rise. The effect of evaporation is to increase the rise of dampness into a corner and lower it by a door opening.

Rising damp can be positively identified as it is the only form of damp containing nitrate salts. The presence of mould quickly eliminates rising damp, as nitrates, found in ground and waste water, inhibit mould growth. Rising damp cannot by itself cause rot.

Rising damp needs a constant source of water, such as a high water within a meter of the brick wall. It is exceptional rare in London as water is pumped out of the ground, and rarely
within a meter of a building. Furthermore, London benefits from a by-law introduced in 1877 requiring a damp-proof courses ("DPC") “beneath the level of the lowest timbers”.

Penetrating damp

Gutters and Drains: Leaking or overflowing gutters and drains are common causes of dampness. They can be difficult to identify in dry weather, so we ask you to look closely at the gutters and drains when it rains.

There are often tell-tale signs, such as a damp stain, greenery or “efflorescent” white streaks. The resolution is often easy, involving a ladder and time to clear the blockage or fix the leak.

External Coverings; Roofs, chimneys, flashings, render

Our survey is not an assessment of the state of roofs, chimneys, flashing, render etc. We look externally for defects and then search internally for signs of dampness. We recommend regular annual integrity checks of external coverings including roofs, chimneys, flashings, render etc.

External Vents: It is important for timbers to be properly ventilated, either in the subfloor void, for floorboards or in the loft for roof timbers. Vents can become blocked over time providing inadequate circulation of air to ensure vapour movement from timbers.

Exterior Ground Levels: The ground immediately surrounding a property is often raised by successive owners to the point where there is very little clearance between the ground and ventilation grills. In the worst cases water flows under the floorboards. Vents should be clear of the ground, ideally higher than a rain drop bounces. Rain water bounces 100-500mm depending on any overhangs, such as window ledges, the type of ground and run off of water. Vents should be observed and recorded during a rain storm – we are happy to analyse results.

If there is sufficient ventilation, a small amount of water entering will evaporate without causing rot. If too much water is entering, then the resolution is a small trench (French drain) about 150mm by 150mm, which can be dug around the vent or perimeter of the exterior wall and filled with shingle or similar material, with drainage. This need not be laborious.

Plumbing leaks

Most plumbing leaks are sudden and obvious. Slow leakage such as from a slightly ruptured pipe is difficult to identify, as are below ground level leaks in the subfloor void, from a mains water pipe, main sewage pipe, rain water pipe or similarly from a neighbour’s pipe.

We do not perform a plumbing survey and may not identify waste water, below ground level leaks or other plumbing leaks. If we suspect that damp is caused by faulty plumbing we will recommend a plumbing survey.
Condensation

Vapour condensing into water on cold surfaces is the most common form of dampness in the home. It is most prevalent on the lower surfaces of external ground floor walls. Warm moist air from a kitchen, bathroom, washing machine or drying clothes will condense rapidly when meeting a cold external wall, window or pipe. Add to this humid breath from human and pets.

A wall will be relatively cold at the point where both skins of a cavity wall meet. This is most pronounced at the base of a ground floor wall, which is often more than 5°C cooler than the ambient temperature. The temperature differential can be much greater at night.

The dew point is the temperature that water starts to condense. Humid air from a warm moist kitchen readily condenses on the cooler surfaces of external walls. Typically, a surface only has to be 5°C lower than the ambient temperature for condensation to start to form.

Glass and metal are good conductors of heat and therefore lose thermal energy much more rapidly than timber, brick or plaster. Condensation runs down cold windows and frames onto walls beneath them. Metal objects embedded in walls such as behind an electrical socket, cable or pipe can initiate condensation. Cold metal can cause condensation, even in summer. Although condensation is inevitable, it can be managed with ventilation out at source, combined with sufficient heat, air circulation and regular wiping of wet surfaces.

Ideally clothes should be dried outside, or with an externally vented clothes drier. Double glazed windows should have trickled vents kept open.

An alternative is to designate wet areas, then manage humidity in those wet areas, by wiping off surface moisture and opening windows often. Victorians used to tile their entrance halls, at the point where cold air meets warm humid air. Bathroom paints and tiles evaporate moisture readily and are easy to wipe down. Top tip; use an electrically heated bathroom mirror.

A common mistake is to increase ventilation into a building. This can be counterproductive as the outside air is likely to be cooler than the warm moist internal air, and will cause, rather than alleviate condensation. Positive flow ventilation systems do not necessarily reduce condensation.

In the worst cases, condensation can form within a wall. This is known as interstitial condensation. We will not be able to identify interstitial condensation unless it visibly affects internal decoration.
TRACING SOURCE OF DAMPNESS

Locating dampness
Damp is more likely to occur in properties that have undergone change since their original design. This change could be rapid such as the building of an extension or water leak, or slow such as weathered tiles or the building-up of ground levels.

Changes include modifications to the neighbouring properties and surroundings. We often spend time comparing the property to its neighbours, to help identify changes. The interface between new and old is a starting point for tracing dampness.

DAMP METERS
Damp meters are useful for rapidly identifying potential damp. Commercially available damp meters either measure dampness in wood by means of electrical conductance or by capacitance. Manufacturers advise against using meters for quantifying damp in anything other than timber. Pure water (sometimes referred to as de-ionised water) is a very poor conductor of electricity. Electrical conductance is a function of ions and cations, mainly from salts, and their mobility, which is increased by a carrier solvent such as water. Conductance of ions is used as a proxy for identifying water. This is justifiable in wood where salt levels are constant and quantified. However, damp in masonry can have a significant variation in the ionic components and concentrations of salts. Therefore, electrical conductance meters cannot positively identify the type of damp nor the amount of dampness in walls. Damp meters can only identify dryness.

Damp meters are useful for quickly identifying potential areas of dampness that need further investigation.

Assessing whether a high meter reading is a sign of dampness
Once a high meter reading is found we check the surrounding area to establish the extent and profile of the damp.

Profiling dampness
Condensation is the most common form of damp. The damp patches tend to be considerably cooler than the ambient temperature. Damp tends to start at the base of an exterior wall, particularly cool, shaded or North facing walls. It often has a curved profile, rising into a corner, and collecting around cold spots such as windows, metal electrical boxes, wires, pipes and corner beading. Condensation rarely affects skirting or floorboards, as wood is a poor
conductor of heat. Walls may feel wet and smell musky. Mould can grow on walls, and on shoes and clothing.

Identifying the source of dampness
If the profile fits with condensation, then there is no need for further investigation. Leaks and water ingress are also easy to identify, but not always easy to trace.

If there is doubt about the damp source, we analyse a sample of the water for salt content.

OBSERVATIONS AT TIME OF SURVEY
As part of our assessment of the likely causes of damp we check internally and externally for symptoms of dampness. Our findings are not an assessment of the state of the property as a whole, merely in the context of damp. This was a non-invasive survey so we did not access the sub-floor or roof voids. There was no reason to suspect current sub-floor or roof timber rot or fungus.

We were unable to inspect woodwork or other parts of the structure which are covered, unexposed or inaccessible, and are therefore unable to report that such parts of the property are free from defect.

Damp
We examined the interior area of the property including all rooms and hallways to determine if there was any dampness or timber defects present.
- There was no evidence of rising dampness in the property at the time of the survey.
- There is no evidence that the original damp proof membrane is damaged or defective.
- We checked the surface of all walls internally for signs of high meter readings.
- We examined the plaster and decorating.
- We also carefully examined the walls inside the kitchen cabinets, and closets, and took damp readings there.
- Electrical points: bearing in mind that all electrical points are set with screws drilled into the masonry wall, if plaster or render was damp there would be evidence of this where the screws were drilled into the wall.

Timber survey
- During a timber survey we examine all visible floorboards, doors and architrave. If any evidence of timber rot, fungus or insect infestation is identified, or we have suspicions that they may be present, we will report them.
- Skirting boards were carefully examined.

Conclusions
Please refer to page 11 for our survey conclusions.

HEALTH AND SAFETY CONSIDERATIONS
a) The area should be cornered off to stop anyone accidentally falling through the floor.

b) The room clearly should not be entered until remedial works completed.

c) It is important to dry out the timber and rot before treatment and to keep all the infected areas ventilated - it will smell mushroomy and fruiting bodies (and spores) will appear as a biological defence - this is good as it reduces the rot’s potency.

d) If it looks like we are about to have a rain storm before I come back, observe the outside by the air vents, and the inside to see if water is getting in. Consider blocking them if water is getting in.

APPENDIX - STANDARD TERMS OF ENGAGEMENT

Terms of Engagement
1) You may cancel this contract with Damp Surveys Ltd at any time 24 hours before the time and day of the pre-arranged inspection.

2) We may cancel this contract at any time including the day of the inspection if we determine after arriving on site, that it is unsafe or that we do not have sufficient skills to complete the exercise for you. In such a case, we will refund full payment less our travel expenses.

3) You are engaging Damp Surveys Ltd, to undertake an inspection of the property in question at a pre-arranged time and the production of a report in a timely fashion thereafter. We will carefully and thoroughly inspect both the inside and outside of the property but NOT any outbuildings unless specifically requested to do so in writing.

4) Before the inspection, but after the appointment has been made, we will undertake a desk top analysis of the property by checking various different websites and other information sources for details about the property and its location.

5) Terms of Payment – we only accept instructions after advance payment.
6) Liability – our report is provided for your use only and may only be relied upon for 90 days from the survey date. Unless expressly stated otherwise in this report, nothing in this report confers or is intended to confer any rights on any third party pursuant to the Contracts (Rights of Third Parties) Act 1999.

7) We are unable to inspect parts of the structure which are covered, unexposed or inaccessible, including lofts, without written permission to do so, and are therefore unable to report that such parts are free from defect. We may express a professional opinion as to the likelihood of damp.

8) No disruptions will be made to the building’s fabric save for a few pin sized holes, left by a measuring device. Access hatches and inspection chamber lids will only be lifted where it is easily possible to do so. Floor coverings and furniture cannot be moved, unless we have the prior written consent of the property owner. Floor voids will only be inspected if access panels permit. If there is a covered area you particularly wish us to investigate, please ensure that the owner of the property gives us prior written permission to uncover it.

9) We sometimes publish damp related images on websites to inform the public of damp, rot and the causes of damp and rot. We make every effort to ensure individual and corporate privacy is protected.

Insurance

For peace of mind, Damp Surveys Ltd have Public Liability insurance of £1,000,000 and Professional Indemnity insurance of £250,000 (annual aggregate) both through Hiscox.