REPORT

For and on behalf of XXXX
Property surveyed XXXX

This report is for the sole use of XXXX for whom the survey was undertaken and can only be relied upon for 90 days from the survey date. Unless expressly stated otherwise in this report, nothing in this report confers or is intended to confer any rights on any third party pursuant to the Contracts (Rights of Third Parties) Act 1999.
Dear XXXX,

Thank you for instructing us to carry out a damp survey of XXXX. We understand that you have concerns about damp on the lower ground floor and so you wish to have an opinion from an independent expert damp surveyor. Please inform us if we have misunderstanding your instructions.

OVERALL OPINION

Overall the flat is beautiful, with a few risks of condensation. Every property suffers from dampness to some degree. You will mitigate the risk of damp if you follow all our recommendations. This report is intended to be read in full. Observations and opinions must not be taken in isolation.

Like any building, especially a period property, you need to be aware of the risks of damp arising in the future and plan a programme of prevention and maintenance accordingly.

We recommend you spend time understanding our advice in this report, which we would be happy to discuss in person. We would also be delighted to revisit at any time for a modest survey update fee and likewise before you eventually decide to sell the property.

INDEPENDENCE AND METHODOLOGY

Our only income is through damp survey fees. Our motivation is integrity and practical, durable solutions. We use chemical analysis to identify damp within walls. There is no conflict of interest as we are independent of contractors, never profit from remedial work and received payment in advance of conducting the survey.

SURVEYOR’S DECLARATION

I confirm that I inspected XXXX on 13 April 2018. I conclude that at the time of the survey there was no rising damp from below the original external ground level. And that the main damp issues result from excess humidity.

Simon Hichens
Simon Hichens, BSc (Chemistry), AISSE (Institute of Specialist Surveyors & Engineers) Property Care Association qualified (PCAGT), Member of Property Mark (ARLA) Specialist Surveyor

Report completed on 14 April 2018
ABOUT DAMP SURVEYS LTD

Damp Surveys Ltd is an independent specialist damp surveying company incorporated following the development of analytical technology employed to rapidly and accurately differentiate types of damp. Confidence in our analytical equipment allows us to categorically state whether or not there is a risk of rising damp. If we are satisfied that there is minimal risk of rising damp, we can offer a warrantee subject to application and conditions.

Independence is key to understanding how we operate and why we provide a unique service quite different to any other company. Many contractors, looking for chemical damp work, offer low cost, or sometimes “free” surveys. We do not and never will benefit financially from any recommended remediation. We are motivated to recommend optimal treatment to protect the property now and into the future.

Your peace of mind is our goal, for you to be satisfied that the property will be properly protected against damp and for you to recommend us in person, or by social media.
THE PROPERTY
The property the lower ground floor flat of a large detached Victorian terraced house built circ. 1860. The front door faces South. All references to location are taken as if standing on the road looking at the front door.

The walls are constructed of solid brickwork probably the thickness of 3 bricks and mortar (13 ½” or 350mm). The lower ground floor to the main building was originally made of suspended wooden flooring.

The lower ground floor is about 1 metre below both gardens. A trench surrounds the building. There is a covered, brick or concrete void to both flanks. Each void has a single vent to the front.

The elevation of the property is about 40M above sea level, in a low flood risk area of London.

Changes to the property’s original design
The property has been modified by conversion into flats.

Internally
The suspended timber floor has been partly replaced with solid flooring, presumably with a damp proof membrane. A bathroom has been added and rooms made habitable.

Chemical damp proofing was applied to the property in 1993 and updated in 2015.

Externally
A deep drain has been dug to the front. A metal staircase has been built on the right-hand void. The neighbour to the left (no. 7) has built a wooden lean-to.

UNDERSTANDING DAMP
Excess damp found in properties is largely as a result of changes from the original design, location or use. Properties are built to absorb rain and evaporate moisture without excessive damp inside. Lifestyles have changed over the years, such as taking showers more often. The resultant raised humidity means most properties are at increased risks of condensation. Damp is not inherently dangerous. However, it can spoil decoration and encourage rot, mould and insect infestation. Rot is omnipresent and starts when wood cells rupture above 28% moisture content with a constant source of water. Brown rots, such as dry rot proliferates in unvented damp voids. Wood boring beetles are attracted to humid wood. Mould requires humidity on the surface of over 85% relative humidity (RH) to grow.
Rising damp can spoil decorative surfaces. However, the quantity of moisture in rising damp is insufficient to cause rot. Ground water contains nitrates, that inhibit mould growth. Rising damp needs a constant source of water, such as a high water-table within a metre of the ground. Stop the source of water and rising damp will dissipate. According to Thames Water, London’s water-table is low, below the lowest tube-line. Rising damp results from the high relative force of attraction of silicone (found in sand, bricks, glass etc.), a phenomenon unhelpfully described as capillarity. The attractive force of silicone spreads water through connected pores in all directions. Plaster can be particularly absorbent. Water spreads downwards first through the additional force of gravity, until lower pores become saturated.

Condensation is caused by moist air condensing on cold surfaces. Condensation starts when surface temperature falls below the “dew point”. The dew point increases as humidity rises. There is often a line within a wall where the temperature is below the dew point, this is called the dew point line. Walls are designed to absorb and evaporate moisture daily. Damp is often cumulative. For example, condensation is more likely to form near a wall that is damp from penetrating rainwater. Likewise, rain will not evaporate as quickly if the wall surface is already humid through condensation. Furthermore, wet external walls are poor thermal insulators. North, North-Eastern and North-Western walls receive minimal warmth from the winter sun. Some damp only occurs infrequently, once every few years, resulting from persistent rain and wind. Damp detection depends on conditions during the survey.

OBSERVATIONS

Conditions during the survey

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupancy</td>
<td>Unoccupied for two weeks, furnished</td>
</tr>
<tr>
<td>Weather</td>
<td>Dry</td>
</tr>
<tr>
<td>The previous 24 hours</td>
<td>Dry</td>
</tr>
<tr>
<td>External temperature</td>
<td>14.0˚C</td>
</tr>
<tr>
<td>External relative humidity</td>
<td>60.1%RH</td>
</tr>
<tr>
<td>Internal ambient temperature</td>
<td>15.5˚C</td>
</tr>
<tr>
<td>Internal relative humidity</td>
<td>60.9%RH</td>
</tr>
<tr>
<td>Mould Point (calculated MouldPoint.co.uk)</td>
<td>10.3˚C</td>
</tr>
<tr>
<td>Dew point (condensation starts below)</td>
<td>8.0˚C</td>
</tr>
</tbody>
</table>

External
- The chimneys, flashing and roofs appeared to be functioning correctly.
- Rainwater goods looked to be in good order, however it was not raining.
- The brickwork appeared to be in reasonable order, with no obvious signs of ingress.
- Given the age of the property there may not be a damp proof course (DPC). The lower section of wall was covered in an impermeable render.
There are a few distinct, localised damp spots on the right-hand flank wall in the reception. Protimeters measure wood moisture, %WME. Masonry needs investigation above 25%WME.

Damp spot 1, meter measured 56%WME above picture rail corner, and 22%WME in a small plaster crack on the internal wall, below the rail (reading 1). It’s circ. 700mm above the void. The colour is light brown, not the teabag colour typical of penetrating damp. Therefore, it is more likely to be the result of metal in the wall causing condensation by thermal conduction. The metal could be imbedded from inside, such as left-over from Victorian gaslights, or as part of the construction of the stairs. However, the location doesn’t match the metal supports above the void (see right-hand photo). It would be useful to see the design of the staircase, and if other flats suffer from similar cold spots.

Damp spot 2, meter measured 58%WME (reading 2) in the corner just above the skirting board by the chimney breast. Damp is very localised. The wall was dry (10%WME) a few inches either side (thereby excluding rising damp as a possible cause). Condensation is the likely cause. Corners are vulnerable since air cannot circulate as easily.

Poor ventilation of the void may be part of the problem. This photo shows the void by the kitchen window. The ideal location for a vent is centre about 200mm off the ground.

Damp spot 3, meter measured 53%WME (reading 3) at ceiling height in corner of the chimney breast where a few white sulphate salts have formed. The high reading is caused by the Protimeter measuring the salts. Conductance meters respond more to salts than water.
B) Hallway by radiator

There was visible water and dark staining on the wood below the valve for draining the hot water system, found below the radiator in the hallway. This has been leaking for some time. The wall around the radiator is damp. There are two causes working in combination:

1. The leak from the drain spreading across the solid floor, under the parquet, and up the wall – it is likely that the plaster is touching the solid floor (hidden by the skirting).
2. The radiator appears to be in use as a drying rack, thereby increasing the condensation, and reducing the ability of the wall to evaporate absorbed moisture.

C) Other areas tested with a Protimeter Damp meter

An independent surveyor tested the property in August 2017, when the tenants were in situ and reported; “High readings were noted to the flank wall with 7 St Johns in two bedrooms, high readings continued at low level to the rear wall and in to the study. High readings were also noted to the kitchens external walls.” Treatment costs were estimated as £36,900.

We tested every external wall, 500mm apart, just above the skirting board. All walls measured about 10%WME, except A) & B). The highest other reading was to the front left behind the cupboard, measuring 17%WME (not too high - poor air circulation). The previous surveyor probably recorded meter readings correctly. However, moisture generated by tenants may not have been considered in the interpretation of measurements.

The photos are example meter readings. The above left is of the bedroom flank wall with 7 St John’s Park. Right-hand photo is of the mouldy external wall to the kitchen – all taken during the tenants’ holiday. Note, the presence of mould at the base of the wall excludes the possibility of rising damp, as nitrates found in ground water inhibit mould growth.
D) Condensation risk factors

The lowest floor of any building is the most vulnerable to condensation, as external walls receive fewer hours of sunlight and, for security reasons, occupants are less willing to open windows. Tenants are less likely than owners to; bother the landlord with defective extractor fans, notice wear and tear, wipe down damp walls or use energy to reduce humidity.

Despite the landlord providing a washer dryer there are clothes racks for indoor drying. Windows look like they are rarely opened. The bathroom vent was not reported as faulty. Two humidifiers are being used to add humidity. The kitchen extractor fan is working, but is it being used to keep humidity out of the kitchen? Maybe not.

E) Mould

Mould is growing around the flat. The key areas are;
1. In the kitchen above the humidifier, by the cold wall next to the kitchen window.
2. Between the fridge and cold external kitchen wall.
3. Around windows, the above picture of mould on the window blind is taken in bedroom 2.

We left a humidity meter for the tenants, to encourage greater humidity awareness. We invite the tenants to regularly use our mould risk calculator which we have made freely available on MouldPoint.co.uk
F) Other matters

Judging by the green copper stain to the tap above the bath, there appears to be a slow leak.

The external metal stair case on the right-hand flank wall has patches of green algae growing and evidence of spillage associated with plant watering. Neither appears to be causing a problem, but these should be monitored.

There is no evidence of a high water-table. Ground sourced water is a necessary component of rising damp.

The photo shows the narrow left-hand void, with a small vent to the front. The neighbour doesn’t appear to have an airbrick. No vent was seen at the rear of the void, but it may have been obscured.
INDEPENDENT SURVEYOR AUGUST ’17 – EXTRACT

Damp improvement works to lower ground
The property is experiencing moisture issues within the flat lower ground floor flat. When on site we recorded internal moisture readings using a Protimeter.

High readings were noted to the flank wall with 7 St Johns in two bedrooms, high readings continued at low level to the rear wall and in to the study.

High readings were also noted to the kitchens external walls.

Within the lounge the readings of moisture on the flank wall were high and at full height of the wall close to the staircase junctions.

The front wall also had high and medium moisture readings around the bay window. The bathroom was not possible to test due to having a tiled finish.

The leaseholder did not advise on any damp issues in the hallway and this was not inspected.

If these works are undertaken there would be additional non-building items to consider. These would include the tenants relocation, professional fees, reinstatement of spec finishes or fit outs. It is possible that this can be completed between tenancies to minimise disruption.

Damp proof course to the front of the property is an injected horizontal dpc. At the rear it is noted that the dpi: is 21 years old, condition is unknown however it is no longer within the warrantee.

Allow a provisional sum for a cavity drainage membrane to be fitted internally to the flank walls within the flat including a small return.

Reinstatement of wall finishes £3,000
Reinstatement of floor finishes £3,000

If these works are undertaken there would be additional non-building items to consider. These would include the tenants relocation, professional fees, reinstatement of spec finishes or fit outs. It is possible that this can be completed between tenancies to minimise disruption.

Damp proof course to the front of the property is an injected horizontal dpc. At the rear it is noted that the dpi: is 21 years old, condition is unknown however it is no longer within the warrantee.

Reinstatement of wall finishes £3,000
Reinstatement of floor finishes £3,000

If these works are undertaken there would be additional non-building items to consider. These would include the tenants relocation, professional fees, reinstatement of spec finishes or fit outs. It is possible that this can be completed between tenancies to minimise disruption.

Damp proof course to the front of the property is an injected horizontal dpc. At the rear it is noted that the dpi: is 21 years old, condition is unknown however it is no longer within the warrantee.

CONCLUSIONS

When the tenants were away on holiday during the survey in April 2018, there was no evidence of the elevated damp meter readings identified by the independent surveyor in August 2017. There was no evidence of a high-water table, indeed the property is on high round compared to the nearby river, the Thames. A constant source of ground water is a necessary component of rising damp. There was nothing to suggest a risk of rising damp.

It is likely that humidity is the main contributing factor in the issues highlighted. It is best to reduce humidity, being inexpensive to resolve first, before considering more expensive and disruptive remedies.
RECOMMENDATIONS

Our recommendations address items identified in our survey as areas of sufficient concern that they must be undertaken to mitigate the risk of damp. In line with every property, we recommend ongoing observation, repair and a periodic programme of maintenance, including annual clearing of gutters, repainting, repointing and noting of perimeter ground level and water-table fluctuations. We are happy to return and update the survey.

No specialist damp treatment is required at this stage.

Action plan;
A. Right-hand flank wall in reception. The dampness should reduce as long-term humidity is brought under control.
 1. If dampness persists, investigate by
 i) reviewing the design drawings for the staircase,
 ii) use of a small metal detector to establish if metal is present.
 If there is metal and it appears to be internal, then it is worth taking out a few inches of the disrupted plaster to establish if it can be extracted easily. If not leave the metal in place and consider using thermal insulating plasterboard, taking approximately 2 days works at a cost of £500 to £1,000 depending on decorative finish.
 2. This is similar to a) but it is also worth adding a ventilation brick to the rear of the void, for through flow. It should take no more than 2 hours work, and cost less than £100 (it is worth investigating the airbrick to the rear of the left-hand void at the same time.
 3. The discoloration may be too minor to be concerned about. But the sulphate salts should be sanded down with coarse grain sand-paper and repainted.
B. Hallway by radiator
 1. The leaking radiator should be fixed, as well as the leak to the bathroom tap. This should take no more than 2 hours each, around £200.
 2. The dampness should dissipate once the leak is fixed and clothes stopped being dried on the radiator.
 Although indirectly related, it appears likely that the plaster is touching the solid floor and may have been one of the reasons for the walls appearing to have rising damp. If rising damp appears to return, it would be worth taking the skirting board away from the walls and cutting away the plaster so that it no longer touches the solid floor.
C. If there is doubt about our Protimeter damp meter readings, or walls appear to be damp again, it is worth considering the use of a data-logger. These devices can record humidity and temperature changes every minute for a month and are one of the best methods of determining if condensation is the issue, particularly at night.
D. Condensation;
1. The tenants must be tactfully asked to use the clothes dryer provided, dry outside, or use the bathroom with the vent on and door closed.
2. Given that it is a lower ground floor flat, it would be advisable to make at least one window in each room, safe to keep ajar at night.
3. Humidifiers must not be used, especially by a cold wall, unless the relative humidity is consistently below 50%RH.
4. The kitchen extractor fan is working well. It should be used when cooking. Also tops should be used on pots and pans.

E. Mould is caused by high humidity and poor air circulation, such as in and behind cupboards. The “silver bullet” is use of a fungicidal paint – they typically keep surfaces mould free for 10 years or more. Cost to paint the “at risk” areas 1 day’s work circ. £300.
F. The tenants should use a humidity meter, and move it around the property at different times of day, to become more humidity aware. We invite the tenants to regularly use our mould risk calculator which we have made freely available on MouldPoint.co.uk

IDENTIFYING DAMP

Damp or dampness, is unwanted and excessive moisture. There are four distinct forms;

- Rising damp is below ground water that rises up a wall,
- Penetrating damp is moisture from defective roofs, gutters, pipes or a “bridge”,
- Plumbing leaks; from mains or internal pipes, waste, drainage and overflows,
- Condensation, the most common cause of dampness.

Rising damp
Rising damp is defined as the deleterious vertical flow of water, derived from below the original ground level, through a property’s internal masonry wall, to above the base of the ground floor. Anyone can replicate rising damp by placing the bottom of a clay brick in water. The same effect is more rapid in a clay tile where damp can be seen to rise by as much as 40 cms in a day.

Rising damp can be positively identified as it is the only form of damp containing nitrate salts.
The presence of mould quickly eliminates rising damp, as nitrates, found in ground and waste water, inhibit mould growth. Rising damp cannot by itself cause rot.

Rising damp needs a constant source of water, such as a high water within a meter of the brick wall. It is exceptional rare in London as water is pumped out of the ground, and rarely within a meter of a building. Furthermore, London benefits from a by-law introduced in 1877 requiring a damp-proof courses (“DPC”) “beneath the level of the lowest timbers”.

Penetrating damp
Gutters and Drains: Leaking or overflowing gutters and drains are common causes of dampness. They can be difficult to identify in dry weather, so we ask you to look closely at the gutters and drains when it rains.

There are often tell-tale signs, such as a damp stain, greenery or “efflorescent” white streaks. The resolution is often easy, involving a ladder and time to clear the blockage or fix the leak.

External Coverings; Roofs, chimneys, flashings, render

Our survey is not an assessment of the state of roofs, chimneys, flashing, render etc. We look externally for defects and then search internally for signs of dampness. We recommend regular annual integrity checks of external coverings including roofs, chimneys, flashings, render etc.

External Vents: It is important for timbers to be properly ventilated, either in the subfloor void, for floorboards or in the loft for roof timbers. Vents can become blocked over time providing inadequate circulation of air to ensure vapour movement from timbers. Terraced or semi-detached properties can be built to include ventilation within the party wall. Neighbours blocking these vents, such as with cavity wall insulation, can render air circulation inadequate.

Ground floor extensions often increase the volume of the sub-floor void without ensuring sufficient airflow. Likewise loft extensions.

Exterior Ground Levels: The ground immediately surrounding a property is often raised by successive owners to the point where there is very little clearance between the ground and ventilation grills. In the worst cases water flows under the floorboards. Vents should be clear of the ground, ideally higher than a typical rain drop bounces, deemed to be 150mm.

The resolution is normally easy. A small trench (French drain) about 150mm, can be dug around the exterior walls, or vent and filled with shingle or similar material.
Most plumbing leaks are sudden and obvious. Slow leakage such as from a slightly ruptured pipe is difficult to identify, as are below ground level leaks in the subfloor void, from a mains water pipe, main sewage pipe, rain water pipe or similarly from a neighbour’s pipe.

We do not perform a plumbing survey and may not identify waste water, below ground level leaks or other plumbing leaks. If we suspect that damp is caused by faulty plumbing we will recommend a plumbing survey.

Condensation

Vapour condensing into water on cold surfaces is the most common form of dampness in the home. It is most prevalent on the lower surfaces of external ground floor walls. Warm moist air from a kitchen, bathroom, washing machine or drying clothes will condense rapidly when meeting a cold external wall, window or pipe. Add to this humid breath from human and pets.

A wall will be relatively cold at the point where both skins of a cavity wall meet. This is most pronounced at the base of a ground floor wall, which is often more than 5°C cooler than the ambient temperature. The temperature differential can be much greater at night.

The dew point is the temperature that water starts to condense. Humid air from a warm moist kitchen readily condenses on the cooler surfaces of external walls. Typically, a surface only has to be 5°C lower than the ambient temperature for condensation to start to form.

Glass and metal are good conductors of heat and therefore lose thermal energy much more rapidly than timber, brick or plaster. Condensation runs down cold windows and frames onto walls beneath them. Metal objects embedded in walls such as behind an electrical socket, cable or pipe can initiate condensation. Cold metal can cause condensation, even in summer. Although condensation is inevitable, it can be manged with ventilation out at source, combined with sufficient heat, air circulation and regular wiping of wet surfaces.

Ideally clothes should be dried outside, or with an externally vented clothes drier. Double glazed windows should have trickled vents kept open.

An alternative is to designate wet areas, then manage humidity in those wet areas, by wiping off surface moisture and opening windows often. Victorians used to tile their entrance halls, at the point where cold air meets warm humid air. Bathroom paints and tiles evaporate moisture readily and are easy to wipe down. Top tip; use an electrically heated bathroom mirror.
A common mistake is to increase ventilation into a building without controlling the airflow. This can be counterproductive as the outside air is likely to be cooler than the warm moist internal air, and will cause, rather than alleviate condensation. Positive flow ventilation systems do not necessarily reduce condensation.

In the worst cases, condensation can form within a wall. This is known as interstitial condensation. We will not be able to identify interstitial condensation unless it visibly affects internal decoration.

TRACING SOURCE OF DAMPNESS

Locating dampness

Damp is more likely to occur in properties that have undergone change since their original design. This change could be rapid such as the building of an extension or water leak, or slow such as weathered tiles or the building-up of ground levels.

Changes include modifications to the neighbouring properties and surroundings. We often spend time comparing the property to its neighbours, to help identify changes.

The interface between new and old is a starting point for tracing dampness.

DAMP METERS

Damp meters are useful for rapidly identifying potential damp. Commercially available damp meters either measure dampness in wood by means of electrical conductance or by capacitance. Manufacturers advise against using meters for quantifying damp in anything other than timber. Pure water (sometimes referred to as de-ionised water) is a very poor conductor of electricity. Electrical conductance is a function of ions and cations, mainly from salts, and their mobility, which is increased by a carrier solvent such as water. Conductance of ions is used as an easy to measure proxy for the presence of water. This is justifiable in wood where salt levels are constant and quantified. However, damp in masonry can have a significant variation in the ionic components and concentrations of salts. Therefore, electrical conductance meters cannot positively identify the type of damp nor the amount of dampness in walls. Damp meters can only identify dryness.

Damp meters are useful for quickly identifying potential areas of dampness that need further investigation.

Assessing whether a high meter reading is a sign of dampness
Once a high meter reading is found we check the surrounding area to establish the extent and profile of the damp.

Profiling dampness
Condensation is the most common form of damp. The damp patches tend to be considerably cooler than the ambient temperature. Damp tends to start at the base of an exterior wall, particularly cool, shaded or North facing walls. It often has a curved profile, rising into a corner, and collecting around cold spots such as windows, metal electrical boxes, wires, pipes and corner beading. Condensation rarely affects skirting or floorboards, as wood is a poor conductor of heat. Walls may feel wet and smell musky. Mould can grow on walls, and on shoes and clothing.

Identifying the source of dampness
If the profile fits with condensation, then there is no need for further investigation. Leaks and water ingress are also easy to identify, but not always easy to trace.

If there is doubt about the damp source, we analyse a sample of the water for salt content.

OBSERVATIONS AT TIME OF SURVEY
As part of our assessment of the likely causes of damp we check internally and externally for symptoms of dampness. Our findings are not an assessment of the state of the property as a whole, merely in the context of damp. This was a non-invasive survey so we did not access the sub-floor or roof voids. There was no reason to suspect current sub-floor or roof timber rot or fungus.
We were unable to inspect woodwork or other parts of the structure which are covered, unexposed or inaccessible, and are therefore unable to report that such parts of the property are free from defect.
Damp
We examined the interior area of the property including all rooms and hallways to determine if there was any dampness or timber defects present.

- The property appears to be in good condition.
- There was evidence of mild condensation in some areas, notably around windows.
- There was no evidence of rising dampness in the property at the time of the survey.
- There is no evidence that the original damp proof membrane is damaged or defective.
- There was no evidence of current penetrating dampness at the time of the survey other than noted.
- We checked the surface of all walls internally for signs of high meter readings.

Timber survey
During a timber survey we examine all visible floorboards, skirting, doors and architrave. We report evidence of timber rot, fungus or timber infestation or suspicions of rot, fungus or timber infestation.

LIMITATIONS
Damp Surveys Ltd reports are designed to provide you with an informed independent expert opinion as to the condition of the property together with any recommendations for further investigation or remedial work. We do not warrantee any findings in this report unless we enter into a separate warrantee agreement with you.

The survey was conducted during daylight hours. Damp will be more noticeable at night and when the weather is colder and more humid. Gutters are more likely to fail when full of leaves and during periods of prolonged rain and adverse wind. We make best endeavours but cannot guarantee being able to identify all forms of damp, rot and insect infestation affecting the property. The survey represents a snapshot in time. Damp is often progressive only becoming visible after the survey. We are happy to return and update our observations and advice at any time.

We carried out a careful and thorough inspection of as much of the property as was accessible. However, when it is not possible to make a full inspection, we make a professional judgement about the likelihood of a defect being present. In certain circumstances, this may lead to a recommendation for further action to open up an area for further investigation. We are unable to see the whole roof, all the guttering and some of the drains. We were unable to inspect woodwork or other parts of the structure which are covered, unexposed or inaccessible, and are therefore unable to report that such parts of the property are free from defect. There were no obvious signs of damp resulting from these limitations.
ONGOING MAINTENANCE

- Keep gutters clear, especially when leaves collect in them.
- Check flow of water from the roof and down the gutter during heavy rain.
- Reduce risk of condensation by extracting damp air from humid rooms such as a kitchen or bathroom.
- Given the age of the property, the external walls are unlikely to be insulated. There is evidence of normal levels of mild condensation. The best solution is to improve the heat on these areas during cold periods, this can be achieved by installing a wall mounted electric thermostat heater in rooms with external walls. If the condensation persists, you may want to consider installing thermal plasterboard on the internal side of the affected walls.
- Mould and damp should be washed away daily.
- There is no magic bullet for condensation in a bathroom. It’s very common. Improving the ventilation out, heat and use of tiles and bathroom paints help.
- If the bathroom is updated in the future be aware when a bath or shower is taken out, there is likely to be evidence of damp left behind it. This is normal and should dry easily.
- All guttering and down-spouts except where noted, appeared to be in good condition but they should be visually inspected during a rain event.
- We advise clients that they need to be vigilant in ensuring that drains and guttering on the building are cleared and functioning at all times.
- Skirting boards were carefully examined. There was no evidence of dampness found except where noted. This is significant as fixing skirting boards to rendered masonry walls requires pre-drilled pilot holes to fit the plastic plugs and screws or nails. These holes can often be up to 100mm deep. If damp is present in the walls, it will rust iron nails or screws, and visibly “bleed” out into the skirting board.
- We examined the plaster and decorating. There were no signs of penetrating dampness nor rising dampness. Here was evidence of mild condensation.
- We also carefully examined the walls inside the kitchen cabinets, and closets, and took damp readings there – no dampness was detected.
- Electrical points: There was no evidence of dampness or moisture around any electrical points except where noted. Again, bearing in mind that all electrical points are set with screws drilled into the masonry wall, if plaster or render was damp there would be evidence of this where the screws were drilled into the wall.

HEALTH AND SAFETY CONSIDERATIONS

There are currently no health and safety issues resulting from defects. Read the manufacturers label on the fungicidal paint.

APPENDIX - STANDARD TERMS OF ENGAGEMENT
Terms of Engagement

1) You may cancel this contract with Damp Surveys Ltd at any time 24 hours before the time and day of the pre-arranged inspection.

2) We may cancel this contract at any time including the day of the inspection if we determine after arriving on site, that it is unsafe or that we do not have sufficient skills to complete the exercise for you. In such a case, we will refund full payment less our travel expenses.

3) You are engaging Damp Surveys Ltd, to undertake an inspection of the property in question at a pre-arranged time and the production of a report in a timely fashion thereafter. We will carefully and thoroughly inspect both the inside and outside of the property but NOT any outbuildings unless specifically requested to do so in writing.

4) Before the inspection, but after the appointment has been made, we will undertake a desk top analysis of the property by checking various different websites and other information sources for details about the property and its location.

5) Terms of Payment – we only accept instructions after advance payment.

6) Liability – our report is provided for your use only and may only be relied upon for 90 days from the survey date. Unless expressly stated otherwise in this report, nothing in this report confers or is intended to confer any rights on any third party pursuant to the Contracts (Rights of Third Parties) Act 1999.

7) We are unable to inspect parts of the structure which are covered, unexposed or inaccessible, including lofts, without written permission to do so, and are therefore unable to report that such parts are free from defect. We may express a professional opinion as to the likelihood of damp.

8) No disruptions will be made to the building’s fabric save for a few pin sized holes, left by a measuring device. Access hatches and inspection chamber lids will only be lifted where it is easily possible to do so. Floor coverings and furniture cannot be moved, unless we have the prior written consent of the property owner. Floor voids will only be inspected if access panels permit. If there is a covered area you particularly wish us to investigate, please ensure that the owner of the property gives us prior written permission to uncover it.

9) We sometimes publish damp related images on websites to inform the public of damp, rot and the causes of damp and rot. We make every effort to ensure individual and corporate privacy is protected.
Insurance
For peace of mind, Damp Surveys Ltd have Public Liability insurance of £1,000,000 and Professional Indemnity insurance of £250,000 (annual aggregate) both through Hiscox.

Quotations
We recommend obtaining three quotes for any significant remedial work. We are happy to review your quotes, but always remain independent of contractors.