REPORT

For and on behalf of XXXX
Property surveyed XXXX
XXXX

This report is for the sole use of XXXX for whom the survey was undertaken and can only be relied upon for 90 days from the survey date. Unless expressly stated otherwise in this report, nothing in this report confers or is intended to confer any rights on any third party pursuant to the Contracts (Rights of Third Parties) Act 1999.
Dear XXXX,

Thank you for instructing us to carry out a damp survey of XXXX. We understand that you own the house. That your buyer’s surveyor flagged up some potential damp issues and that you wish to have an opinion from an independent expert damp surveyor. Please inform us if we have misunderstanding your instructions.

OVERALL OPINION

Overall the house is beautiful with some limited risk of damp. Every property suffers from dampness to some degree. You will mitigate the risk of damp if you follow all our recommendations. The cost of following these recommendations is less than the average annual costs of maintaining a period property in London. This report is intended to be read in full. Observations and opinions must not be taken in isolation.

Like any building, especially a period property, you need to be aware of the risks of damp arising in the future and plan a programme of prevention and maintenance accordingly.

We recommend you spend time understanding our advice in this report, which we would be happy to discuss in person. We would also be delighted to revisit at any time for a modest survey update fee and likewise before you eventually decide to sell the property.

INDEPENDENCE AND METHODOLOGY

Our only income is through damp survey fees. Our motivation is integrity and practical, durable solutions. There is no conflict of interest as we are independent of contractors and never profit from remedial work. We use chemical analysis to identify damp within walls.

SURVEYOR’S DECLARATION

I confirm that I inspected XXXX on 13 April 2018. I conclude that at the time of the survey there was no significant risk of rising damp from below the original external ground level.

Simon Hichens, BSc (Chemistry), AISSE (Institute of Specialist Surveyors & Engineers)
PCA (Property Care Association - trained & certified), MARLA, MNAEA, PWC (consult/audit)
Senior Surveyor
Report completed on 18 April 2018
ABOUT DAMP SURVEYS LTD

Damp Surveys Ltd is an independent specialist damp surveying company incorporated following the development of analytical technology employed to rapidly and accurately differentiate types of damp. Our confidence in our analytical equipment allows us to categorically state whether or not there is a risk of rising damp. If we are satisfied that there is minimal risk of rising damp, we can offer a warrantee subject to application and conditions.

Independence is key to understanding how we operate and why we provide a unique service quite different to any other company. Many contractors, looking for chemical damp work, offer low cost, or sometimes “free” surveys. We do not and never will benefit financially from any recommended remediation. We are motivated to recommend optimal treatment to protect the property now and into the future.

Your peace of mind is our goal, for you to be satisfied that the property will be properly protected against damp and for you to recommend us in person, or by social media.
THE PROPERTY

The property is a Victoria mid-terrace house built around 1900. The front door faces North. All references to location are taken as if standing on the road looking at the front door.

The walls are constructed of 9” solid brickwork. Some of the windows and doors have been updated. The lower ground floor is made of suspended timber flooring over a vented sub-floor void. The house has an elevation of 24M above sea level, in a low flood risk area of London.

Changes to the property’s original design

Other than a modern lifestyle, a bathroom and opening the lower ground floor rooms, there are no material changes to the property’s original design (from a damp perspective).

UNDERSTANDING DAMP

Excess damp found in properties is largely as a result of changes from the original design, location or use. Properties are built to absorb rain and evaporate moisture without excessive damp inside. Lifestyles have changed over the years, such as taking showers more often. The resultant raised humidity means most properties are at increased risks of condensation.

Damp is not inherently dangerous. However, it can spoil decoration and encourage rot, mould and insect infestation. Rot is omnipresent and starts when wood cells rupture above 28% moisture content with a constant source of water. Brown rots, such as dry rot proliferates in unvented damp voids. Wood boring beetles are attracted to humid wood. Mould requires humidity on the surface of over 85% relative humidity (RH) to grow.

Rising damp can spoil decorative surfaces. However, there is insufficient moisture to cause rot. Ground water contains nitrates, that inhibit mould growth. Rising damp needs a constant source of water, such as a high water-table within a meter of the ground. Stop the source of water and rising damp will dissipate. According to Thames Water, London’s water-table is low, below the lowest tube-line. Rising damp results from the high relative force of attraction of silicone (found in sand, bricks, glass etc.), a phenomenon unhelpfully described as capillarity. The attractive force of silicone spreads water through connected pores in all directions. Plaster can be particularly absorbent. Water spreads downwards first through the additional force of gravity, until lower pores become saturated.

Condensation is caused by moist air condensing on cold surfaces, condensation starts when a wall’s temperature falls below the “dew point”. The dew point increases as humidity rises. There is often a line within a wall where the temperature is below the dew point, this is called the dew point line. Walls are designed to absorb and evaporate moisture daily.
Damp is often cumulative. For example, condensation is more likely to form near a wall that is damp from penetrating rainwater. Likewise, rain will not evaporate as quickly if the wall surface is already humid through condensation. Furthermore, wet external walls are poor thermal insulators. North, North-Eastern and North-Western walls receive minimal warmth from the winter sun. Some damp only occurs infrequently, once every few years, resulting from persistent rain and wind. Damp detection depends on conditions during the survey.

OBSERVATIONS

Conditions during the survey

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupancy</td>
<td>Occupied, furnished</td>
</tr>
<tr>
<td>Weather</td>
<td>Dry</td>
</tr>
<tr>
<td>The previous 24 hours</td>
<td>Dry</td>
</tr>
<tr>
<td>Internal temperature</td>
<td>17.6°C</td>
</tr>
<tr>
<td>Internal Relative Humidity</td>
<td>54.5%RH</td>
</tr>
<tr>
<td>Dew point by damp wall</td>
<td>8.3°C</td>
</tr>
</tbody>
</table>

External

- The chimneys (vented caps), flashing and roof appeared to be functioning correctly.
- Rainwater goods looked to be in good order, however it was not raining. There were some signs of damp not evaporating to the rear wall.
- The damp proof course (DPC) was obscured with impermeable render.
- There appeared to be sufficient ventilation grills to the front and back to create a through draft.
- The brickwork appeared to be in reasonable order, as was the render.
Internal measurements
A Protimeter Surveymaster II was used to detect potential damp in “search mode” across all walls and up chimney breasts, where elevated readings noted, the area was checked more accurately in “conductance” mode. The conductance effectively measures the passage of electrolytes (mainly salts) in water, between two pins, designed for wood. Greater than 18% Wood Moisture Equivalent (WME), is considered to be sufficiently elevated to need further investigation, but it needs 28% for rot to form. Surface timbers were sampled in conductance mode. None were found to be above 18%.

Although meters are a useful tool for identifying areas of potential damp in masonry, the meters can give very misleading information, mainly because some substrates are very high in salts, such as a gypsum plaster, very common and made from calcium sulphate, a salt. Surveyors should only use damp meters are a qualitative tool, not quantitative, i.e. the percentage is less important than identifying areas of high and low readings.

For masonry, damp meter readings in conductance mode above 25% WME, need further investigation.

Front reception, the area needing further investigation is shown in red below

Explanation for high meter readings
The high meter readings in the “dining room” are caused by salts. See explanation for why chimneys are normally high in salts; https://www.youtube.com/watch?v=KuoKhF31hL8.

The left-hand image shows low damp meter reading of 13.0% WME. This demonstrates that rising damp is not present. Salt damage can be seen to the right (in the salt area the meter read 52% WME – see page 8). With rising damp, moisture is by definition greater, lower down a wall.
ILLUSTRATIONS

1 Elevated meter reading on chimney breast

The wall visibly suffering from salt damage, almost certainly calcium sulphate found in gypsum plaster, with salts from a time when wood or coal was burnt in the fireplace. These salts are hygroscopic (they attract water). Sulphate migrates and concentrate on the surface 1mm when plaster has been applied without time for successive layers to dry. As can be seen in the right-hand image the wall is dry a short distance away, at a lower position, this demonstrates that it can’t be rising damp, as the effect of gravity ensures that lower pores in masonry are saturated first, before moisture will rise.

2 Elevated meter readings by the narrow wall to kitchen

The above shows damp meter readings by the narrow wall separating the kitchen from the dining room. The readings are from left to right 10.9%WME, 40.5%WME, 48.9%WME. The area looks like it has been replastered, presumably when the kitchen was divided. The decorative paint does not look spoilt. However, excessive humidity (over 80%RH) may cause a temporary and slight discoloration.

The solid floors are unlikely to contain a damp-proof membrane to stop rising damp. However, timber were sampled tested. None were found to have high damp meter readings, which they would have if they were in contact with damp earth.
3 Water damaged plaster in corridor by door to back garden

The most significant moisture in the house is in the corridor by the back door. The dampness lines up with dampness found on the outside of the property and is caused by rain water splashing off garden furniture left by the wall.

It is both visibly damp on the outside, and measured to be 28.6%WME into the corner. However, at a similar level but shielded from rain bouncing off the garden furniture, the damp meter registers on 9.7%WME. It also demonstrates that rising damp cannot be the cause. The culprit is in the right-hand photo, the green tarpaulin covering the furniture.

4 Other matters

The tiled area below the stairs to the front door is bound to be humid, as it was originally design for coal storage or similar. The retaining wall to the front has a plaster crack and green algae growing. Weep holes can be added. It is decorative decision to improve this wall in line with other retaining walls on the street, such as the neighbour’s wall.
CONCLUSIONS
The property is not suffering from rising dampness. Indeed, we agreed, there is no evidence of rising damp. The property has a number of areas of high salt levels around the chimney, nothing that should cause a concern. There is an area of excessing dampness caused by rainwater splashing off garden furniture.

The cost of the works detailed in the recommendations are miniscule in the context of normal annual maintenance costs of a period property. You must follow our recommendations.

RECOMMENDATIONS
Our recommendations address items identified in our survey as areas of sufficient concern that they must be undertaken to mitigate the risk of damp. Numbers correspond to those in sections entitled Floorplan and Illustrations. In line with every property, we recommend ongoing observation, repair and a periodic programme of maintenance, including annual clearing of gutters, repainting, repointing and noting of perimeter ground level and water-table fluctuations. We are happy to return and update the survey.

1. **Salts on chimney breast**
 Use a coarse grain sandpaper to take away the first 1mm or so. Allow to dry thoroughly. Test with damp meter, a cheap £10 meter through shop or Amazon/eBay etc is sufficient for these purposes. If showing normal dampness, repaint, initially with 10:1 (paint to water) mist coat. The time to repair this is about 1 hour in total.

2. **Salts by narrow wall to kitchen**
 The effect of the salts are probably too marginal to do anything with this area. However, if damp appears, do the same as 1 above. Similar time to repair.

3. **Damage in corridor to back door**
 Take away any obstacles causing rainwater to dampen the rear wall. Once the wall is dry, the inside can be treated as 1 above. Similar time to repair.

4. **Damp coal storage (front cupboard) and retaining wall.**
 These areas were designed to be damp. It is our opinion that they should be kept as closely to the original design as possible. Change is the biggest driver of damp issues in a house. They could both be improved decoratively, however the damp is unlikely to be effected by decorative improvement.
LIMITATIONS

Damp Surveys Ltd reports are designed to provide you with an informed independent expert opinion as to the condition of the property together with any recommendations for further investigation or remedial work. We do not warrantee any findings in this report unless we enter into a separate warrantee agreement with you.

The survey was conducted during daylight hours. Damp will be more noticeable at night and when the weather is colder and more humid. Gutters are more likely to fail when full of leaves and during periods of prolonged rain and adverse wind. We make best endeavours but cannot guarantee being able to identify all forms of damp, rot and insect infestation affecting the property. The survey represents a snapshot in time. Damp is often progressive only becoming visible after the survey. We are happy to return and update our observations and advice at any time.

We carried out a careful and thorough inspection of as much of the property as was accessible. However, when it is not possible to make a full inspection, we make a professional judgement about the likelihood of a defect being present. In certain circumstances, this may lead to a recommendation for further action to open up an area for further investigation. We are unable to see the whole roof, all the guttering and some of the drains. We were unable to inspect woodwork or other parts of the structure which are covered, unexposed or inaccessible, and are therefore unable to report that such parts of the property are free from defect. There were no obvious signs of damp resulting from these limitations.

SURVEY OBJECTIVES

Our damp and timber surveys are designed to:

- identify the areas of unwanted dampness within the property,
- identify the types of unwanted dampness,
- identify the causes of unwanted dampness,
- identify the effects of damp such as rotten timber, mould and infestation,
- recommend remedial action where damp has been identified,
- recommend long-term plans to address risk of future dampness,

SURVEY METHODOLOGY

In assessing whether dampness and timber defects are present in a property we consider many factors including:

- weather conditions during and preceding the survey,
- inside and outside temperature and humidity and the orientation of each wall,
design and age of the property, elevation, signs of flooding and standing water,
cold spots and flow of cold or humid air in and around the property,
roofing and guttering (this is NOT a roofing report),
signs of drain leakage (this is NOT a plumbing survey, nor a pressure check),
coverings and coatings of internal and external walls,
existence of damp proofing, cavity wall insulation or timber treatments,
height of the surrounding garden, and sufficiency of ventilation,
moisture meter using a Protimeter “Survey Master”,
The survey is non-invasive save for a few pin sized holes, left by a measuring device. We do not lift floor coverings without written consent. We do not look in lofts unless expressly asked to do so.

ONGOING MAINTENANCE

Keep gutters clear, especially when leaves collect in them.
Check flow of water from the roof and down the gutter during heavy rain.
Reduce risk of condensation by extracting damp air from humid rooms such as a kitchen or bathroom.
Given the age of the property, the external walls are unlikely to be insulated. There is evidence of normal levels of mild condensation. The best solution is to improve the heat on these areas during cold periods, this can be achieved by installing a wall mounted electric thermostat heater in rooms with external walls. If the condensation persists, you may want to consider installing thermal plasterboard on the internal side of the affected walls.
Mould and damp should be washed away daily.
There is no magic bullet for condensation in a bathroom. It’s very common. Improving the ventilation out, heat and use of tiles and bathroom paints help.
If the bathroom is updated in the future be aware when a bath or shower is taken out, there is likely to be evidence of damp left behind it. This is normal and should dry easily.
All guttering and down-spouts except where noted, appeared to be in good condition but they should be visually inspected during a rain event.
We advise clients that they need to be vigilant in ensuring that drains and guttering on the building are cleared and functioning at all times.
Skirting boards were carefully examined. There was no evidence of dampness found except where noted. This is significant as fixing skirting boards to rendered masonry walls requires pre-drilled pilot holes to fit the plastic plugs and screws or nails. These holes can often be up to 100mm deep. If damp is present in the walls, it will rust iron nails or screws, and visibly “bleed” out into the skirting board.
We examined the plaster and decorating. There were no signs of penetrating dampness nor rising dampness. Here was evidence of mild condensation.

We also carefully examined the walls inside the kitchen cabinets, and closets, and took damp readings there – no dampness was detected.

Electrical points: There was no evidence of dampness or moisture around any electrical points except where noted. Again, bearing in mind that all electrical points are set with screws drilled into the masonry wall, if plaster or render was damp there would be evidence of this where the screws were drilled into the wall.

IDENTIFYING DAMP

Damp or dampness, is unwanted and excessive moisture. There are four distinct forms;

- Rising damp is below ground water that rises up a wall,
- Penetrating damp is moisture from defective roofs, gutters, pipes or a “bridge”,
- Plumbing leaks; from mains or internal pipes, waste, drainage and overflows,
- Condensation, the most common cause of dampness.

Rising damp

Rising damp is defined as the deleterious vertical flow of water, derived from below the original ground level, through a property’s internal masonry wall, to above the base of the ground floor. Anyone can replicate rising damp by placing the bottom of a clay brick in water. The same effect is more rapid in a clay tile where damp can be seen to rise by as much as 40 cms in a day.

Rising damp can be positively identified as it is the only form of damp containing nitrate salts.

The presence of mould quickly eliminates rising damp, as nitrates, found in ground and waste water, inhibit mould growth. Rising damp cannot by itself cause rot.

Rising damp needs a constant source of water, such as a high water within a meter of the brick wall. It is exceptional rare in London as water is pumped out of the ground, and rarely within a meter of a building. Furthermore, London benefits from a by-law introduced in 1877 requiring a damp-proof courses (“DPC”) “beneath the level of the lowest timbers”.

Penetrating damp

Gutters and Drains: Leaking or overflowing gutters and drains are common causes of dampness. They can be difficult to identify in dry weather, so we ask you to look closely at the gutters and drains when it rains.
There are often tell-tale signs, such as a damp stain, greenery or “efflorescent” white streaks. The resolution is often easy, involving a ladder and time to clear the blockage or fix the leak.

External Coverings; Roofs, chimneys, flashings, render

Our survey is not an assessment of the state of roofs, chimneys, flashing, render etc. We look externally for defects and then search internally for signs of dampness. We recommend regular annual integrity checks of external coverings including roofs, chimneys, flashings, render etc.

External Vents: It is important for timbers to be properly ventilated, either in the subfloor void, for floorboards or in the loft for roof timbers. Vents can become blocked over time providing inadequate circulation of air to ensure vapour movement from timbers. Terraced or semi-detached properties can be built to include ventilation within the party wall. Neighbours blocking these vents, such as with cavity wall insulation, can render air circulation inadequate.

Ground floor extensions often increase the volume of the sub-floor void without ensuring sufficient airflow. Likewise loft extensions.

Exterior Ground Levels: The ground immediately surrounding a property is often raised by successive owners to the point where there is very little clearance between the ground and ventilation grills. In the worst cases water flows under the floorboards. Vents should be clear of the ground, ideally higher than a typical rain drop bounce, deemed to be 150mm.

The resolution is normally easy. A small trench (French drain) about 150mm, can be dug around the exterior walls, or vent and filled with shingle or similar material.

Plumbing leaks

Most plumbing leaks are sudden and obvious. Slow leakage such as from a slightly ruptured pipe is difficult to identify, as are below ground level leaks in the subfloor void, from a mains water pipe, main sewage pipe, rain water pipe or similarly from a neighbour’s pipe.

We do not perform a plumbing survey and may not identify waste water, below ground level leaks or other plumbing leaks. If we suspect that damp is caused by faulty plumbing we will recommend a plumbing survey.
Condensation
Vapour condensing into water on cold surfaces is the most common form of dampness in the home. It is most prevalent on the lower surfaces of external ground floor walls. Warm moist air from a kitchen, bathroom, washing machine or drying clothes will condense rapidly when meeting a cold external wall, window or pipe. Add to this humid breath from human and pets.

A wall will be relatively cold at the point where both skins of a cavity wall meet. This is most pronounced at the base of a ground floor wall, which is often more than 5°C cooler than the ambient temperature. The temperature differential can be much greater at night.

The dew point is the temperature that water starts to condense. Humid air from a warm moist kitchen readily condenses on the cooler surfaces of external walls. Typically, a surface only has to be 5°C lower than the ambient temperature for condensation to start to form.

Glass and metal are good conductors of heat and therefore lose thermal energy much more rapidly than timber, brick or plaster. Condensation runs down cold windows and frames onto walls beneath them. Metal objects embedded in walls such as behind an electrical socket, cable or pipe can initiate condensation. Cold metal can cause condensation, even in summer. Although condensation is inevitable, it can be manged with ventilation out at source, combined with sufficient heat, air circulation and regular wiping of wet surfaces.

Ideally clothes should be dried outside, or with an externally vented clothes drier. Double glazed windows should have trickled vents kept open.

An alternative is to designate wet areas, then manage humidity in those wet areas, by wiping off surface moisture and opening windows often. Victorians used to tile their entrance halls, at the point where cold air meets warm humid air. Bathroom paints and tiles evaporate moisture readily and are easy to wipe down. Top tip; use an electrically heated bathroom mirror.

A common mistake is to increase ventilation into a building. This can be counterproductive as the outside air is likely to be cooler than the warm moist internal air, and will cause, rather than alleviate condensation. Positive flow ventilation systems do not necessarily reduce condensation.

In the worst cases, condensation can form within a wall. This is known as interstitial condensation. We will not be able to identify interstitial condensation unless it visibly affects internal decoration.
TRACING SOURCE OF DAMPNESS

Locating dampness
Damp is more likely to occur in properties that have undergone change since their original design. This change could be rapid such as the building of an extension or water leak, or slow such as weathered tiles or the building-up of ground levels.

Changes include modifications to the neighbouring properties and surroundings. We often spend time comparing the property to it neighbours, to help identify changes.

The interface between new and old is a starting point for tracing dampness.

DAMP METERS
Damp meters are useful for rapidly identifying potential damp. Commercially available damp meters either measure dampness in wood by means of electrical conductance or by capacitance. Manufacturers advise against using meters for quantifying damp in anything other than timber. Pure water (sometimes referred to as de-ionised water) is a very poor conductor of electricity. Electrical conductance is a function of ions and cations, mainly from salts, and their mobility, which is increased by a carrier solvent such as water. Conductance of ions is used as an easy to measure proxy for the presence of water. This is justifiable in wood where salt levels are constant and quantified. However, damp in masonry can have a significant variation in the ionic components and concentrations of salts. Therefore, electrical conductance meters cannot positively identify the type of damp nor the amount of dampness in walls. Damp meters can only identify dryness.

Damp meters are useful for quickly identifying potential areas of dampness that need further investigation.

Assessing whether a high meter reading is a sign of dampness
Once a high meter reading is found we check the surrounding area to establish the extent and profile of the damp.

Profiling dampness
Condensation is the most common form of damp. The damp patches tend to be considerably cooler than the ambient temperature. Damp tends to start at the base of an exterior wall, particularly cool, shaded or North facing walls. It often has a curved profile, rising into a corner, and collecting around cold spots such as windows, metal electrical boxes, wires, pipes and corner beading. Condensation rarely affects skirting or floorboards, as wood is a poor conductor of heat. Walls may feel wet and smell musky. Mould can grow on walls, and on shoes and clothing.
Identifying the source of dampness
If the profile fits with condensation, then there is no need for further investigation. Leaks and water ingress are also easy to identify, but not always easy to trace.

If there is doubt about the damp source, we analyse a sample of the water for salt content.

OBSERVATIONS AT TIME OF SURVEY
As part of our assessment of the likely causes of damp we check internally and externally for symptoms of dampness. Our findings are not an assessment of the state of the property as a whole, merely in the context of damp. This was a non-invasive survey so we did not access the sub-floor or roof voids. There was no reason to suspect current sub-floor or roof timber rot or fungus.

We were unable to inspect woodwork or other parts of the structure which are covered, unexposed or inaccessible, and are therefore unable to report that such parts of the property are free from defect.

Damp
We examined the interior area of the property including all rooms and hallways to determine if there was any dampness or timber defects present.

- The property appears to be in good condition.
- There was evidence of mild condensation in some areas, notably around windows.
- There was no evidence of rising dampness in the property at the time of the survey.
- There is no evidence that the original damp proof membrane is damaged or defective.
- There was no evidence of current penetrating dampness at the time of the survey other than noted.
- We checked the surface of all walls internally for signs of high meter readings.

Timber survey
During a timber survey we examine all visible floorboards, skirting, doors and architrave. If any evidence of timber rot, fungus or insect infestation is identified, or we have suspicions that they may be present, we will report them.

HEALTH AND SAFETY CONSIDERATIONS
There are currently no health and safety issues resulting from defects.
APPENDIX - STANDARD TERMS OF ENGAGEMENT

Terms of Engagement

1) You may cancel this contract with Damp Surveys Ltd at any time 24 hours before the time and day of the pre-arranged inspection.

2) We may cancel this contract at any time including the day of the inspection if we determine after arriving on site, that it is unsafe or that we do not have sufficient skills to complete the exercise for you. In such a case, we will refund full payment less our travel expenses.

3) You are engaging Damp Surveys Ltd, to undertake an inspection of the property in question at a pre-arranged time and the production of a report in a timely fashion thereafter. We will carefully and thoroughly inspect both the inside and outside of the property but NOT any outbuildings unless specifically requested to do so in writing.

4) Before the inspection, but after the appointment has been made, we will undertake a desk top analysis of the property by checking various different websites and other information sources for details about the property and its location.

5) Terms of Payment – we only accept instructions after advance payment.

6) Liability – our report is provided for your use only and may only be relied upon for 90 days from the survey date. Unless expressly stated otherwise in this report, nothing in this report confers or is intended to confer any rights on any third party pursuant to the Contracts (Rights of Third Parties) Act 1999.

7) We are unable to inspect parts of the structure which are covered, unexposed or inaccessible, including lofts, without written permission to do so, and are therefore unable to report that such parts are free from defect. We may express a professional opinion as to the likelihood of damp.

8) No disruptions will be made to the building’s fabric save for a few pin sized holes, left by a measuring device. Access hatches and inspection chamber lids will only be lifted where it is easily possible to do so. Floor coverings and furniture cannot be moved, unless we have the prior written consent of the property owner. Floor voids will only be inspected if access panels permit. If there is a covered area you particularly wish us to investigate, please ensure that the owner of the property gives us prior written permission to uncover it.
9) We sometimes publish damp related images on websites to inform the public of damp, rot and the causes of damp and rot. We make every effort to ensure individual and corporate privacy is protected.

Insurance
For peace of mind, Damp Surveys Ltd have Public Liability insurance of £1,000,000 and Professional Indemnity insurance of £250,000 (annual aggregate) both through Hiscox.

Quotations
We recommend obtaining three quotes for any significant remedial work. We are happy to review your quotes, but always remain independent of contractors.